

BusTracker design document

Pekka Ihalainen

1. Abstract

BusTracker is a interactive web-based software for monitoring busses used in public transportation in

Tampere, Finland. The aim of the project was to give insight of where and how busses move in Tampere

using GPS coordinates displayed in Google maps and OpenStreetMap. Software was designed to be run on

any modern browser including but not restricted to Opera, Internet Explorer, Safari, Chrome and Firefox.

The project is part of university course TIETS16 Programming Project and it is held by Professor Jyrki

Nummenmaa. The project was supervised by Paula Syrjärinne and Tero Piirainen.

2. BusTracker

BusTracker is a software, which displays the current locations of the all the busses of Tampere region in a

selected map type. Map types currently supported by the software are Google Maps and OpenStreetMap.

BusTracker reads JSON output, which holds all the data of the busses in a single “file”, from the SIRI access

interface provided by ITS Factory. Using that JSON data, the locations of the busses parsed and displayed to

selected map type. Refresh rate of the rendering is limited to maximum speed of one second. This

maximum limit is set by ITS Factory’s SIRI interface, which only refreshes its data every second but also the

browsers (particularly mobile-browsers) can’t handle faster rendering rate, since the parsing and

processing of the data are quite CPU and network heavy jobs.

Currently BusTracker supports number of different features. Below is the list of the features with the

explanation.

• Refresh rate: User can change the refresh rate of the bus tracking. Available options are one

second, three seconds and five seconds. The default setting is five seconds and it is recommended

for slow computers or mobile browsers. The fastest, one second option, is only recommended with

the modern computers with broadband network.

• Bus line: User can choose which line is to be tracked on map. The list is taken from the TKL’s

website. Options from which to select are one of the TKL’s provided lines or all lines. Currently

software doesn’t support displaying of two different lines simultaneously.

• Real-time tracking: User can toggle the tracking of the busses on and off. When the tracking is off

all the data previously gathered are saved however if user resumes the tracking and user had

tracing on before pausing the tracking, the tracing continues from next possible gps-point and thus

making the tracing line jump weirdly.

• Tracing: User can toggle on and off the tracing of the busses. If the tracing is on, all the data coming

to system is saved and that data is processed and shown as a tracing line for particular line or all

the busses (depending on bus line option). Note that if tracing is on for a long time, the data

stored by the software increases dramatically thus making mobile browsers laggy and in the worst

case quit unexpectedly.

• Map type: User can select from two different map layouts which one to use. Currently supported

maps are Google Maps and OpenStreetMap. When switching between the maps, all the settings

and viewport coordinates are saved and brought to new map type. Changing between maps should

be transparent.

• URL parameters: User can change the default settings using URL parameters. Currently supported

parameters are zoom, latitude, longitude and map. With these options the software can be set to

display the desired location with the zoom level and map type. Convenient when pasting the URL to

another person.

There we also several suggestions for feature which couldn’t be implemented at this point. Below is a

list of some of those and reasoning for not implementing.

• HERE Maps: 3th map type for the software to display. Reason this didn’t get implemented was that

coding language (GWT) didn’t have support for HERE Maps. Google nor any 3th party didn’t

provide bindings for HERE Maps javascript -> GWT.

• KML layer for bus lines: A full KML layer for every bus line was implemented but removed because

it didn’t provide any useful information at that point. KML layer for single line for suggested but it

was left outside of this version due lacking of time. Parsing GTFS file for single bus line is time

consuming if it is done ‘on-the-fly’ so intelligence server-side implementation would have been

needed to accomplish that.

• Bus stops layer: To render bus stops on the map. Basically the same explanation than in KML layer

case. However it could have been achieved with less for if the bus stops would have been hard

coded into code.

3. Technical details

3.1. Tools and requirements

BusTracker has been coded using GWT, Google WebToolKit, which can be found at

http://www.gwtproject.org/ . BusTracker’s code is plain Java code with CSS and HTML files. GWT compiles

the java code into javascript code and packages all the files into neat pile. From the end user point of view

all the software is, is a HTML file and several javascript files with one CSS file. Because of using Java with

GWT, the software in theory can be ported to native java also.

BusTracker runs on any web-server which has PHP5 support. PHP support is needed because BusTracker

uses PHP as server-side language to retrieve the JSON data from the ITS Factory SIRI interface. Apart from

this, BusTracker runs solely on client-side.

BusTracker utilizes Google Maps and OpenStreetMap public interfaces to display the map data. Those

interfaces are for Javascript so 3th party bindings has been used to integrate these services to GWT’s Java

code. GWT OpenLayers API (www.openlayers.org) is used to display OpenStreetMap and gwt-google-apis

(http://code.google.com/p/gwt-google-apis/) is used to display Google Maps. Note that Google Maps

could be displayed with OpenLayers also however OpenLayers doesn’t support all the features at the same

scale as the gwt-google-api.

3.2. Architecture

BusTracker uses traditional MVC, Model-View-Controller, architecture in its design. BusTrackers model

handles the JSON data retrieval and processing as well as keeps the settings such as zoom level, latitude,

longitude and viewport position.

Views are created and destroyed whenever demanded. If the program starts with Google Maps, the

GMView is created and loaded. When user switches the few to OSMView the GMView gets destroyed and

OSMView is created. This way the views release the memory they consume when different kind of bus data

is processed. Basically all plotting and tracing data is kept inside view instead of model. Reason for this is

the difference between Openlayers and google-maps APIs. It was more efficient to make each store the

data in their own data storages rather than try to unify them.

Even though controllers are usually own objects or classes, they are in BusTracker implemented inside

view. GWT uses event handlers for handling events from elements and mouse and therefore it is more

convenient to make handlers directly into view rather than put them all in different class.

Model uses pull method when communicating with the views. Model sends a event-message to every and

all observers and the observers, in this case the views, decide if they want to act upon that message. If they

decide to act, they make a method call to model to retrieve data they want.

Model retrieves the JSON via server-side PHP file at the speed the user has requested. The retrieval itself is

not time consuming process since its non-blocking request via GET. However parsing the JSON and

processing the data takes time and CPU power. This leads to biggest problem the software has. On average

the processing took from 500ms to almost 800ms. This leaving a cap of 500-200ms for model to give other

methods and software time to work. It was soon noticed that with 500ms of free time for browser to

handle other requested than models requests, the Google Maps and OpenStreetMaps rendering was laggy

and controlling the maps was hard because from time to time the events didn’t get passed to maps event

handlers. With three of five second update speed this wasn’t a major concern. With those speeds the maps

had plenty of time to handle rendering and scrolling but anything faster than that made the software laggy.

One solution to solve this problem would be to use threads. However threads are not supported in natively

Javascript at the moment. And any kind of other threading required native Javascript API which isn’t

supported by GWT. At this point the problem remains within the software. If used in slightly older

computers the rendering of the maps is laggy, in modern computers it is competent but not ideal.

4. Conclusion

Overall the project in my mind was a success and achieved what was required of it. At the very beginning I

didn’t know much about GPS nor anything to tools and technologies related to that. During the project I

feel like I grew at least small understanding of how those things work. It was one of the most educating

projects I have done during my studies and I liked it a lot for that.

If the project is at some point taken over by someone else, in my opinion the main areas of improvement

would be, solving the problem with update speed, making the markers look good and adding bus stops

feature.

Of course if at some point the GTFS from TKL could be imported into Google Maps itself it would make

great addition to software. Then it would be possible to see bus lines properly and watch where the busses

are along those lines.

